

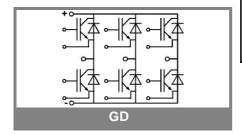
SKiM[®] 4

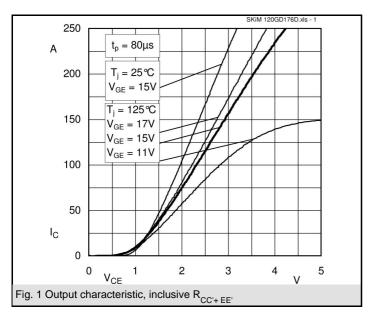
IGBT Modules

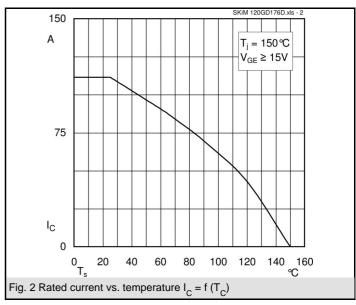
SKiM 120GD176D

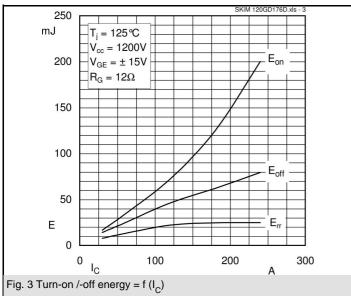
Preliminary Data

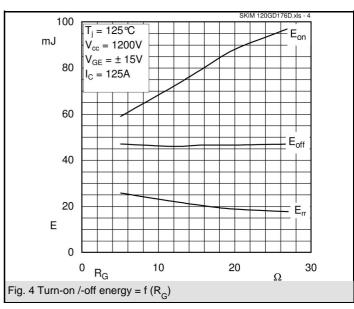
Features

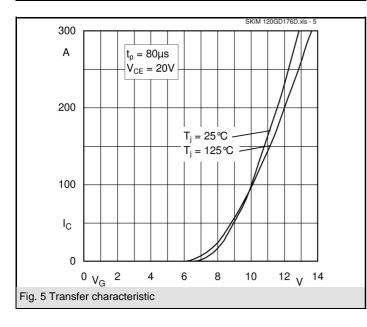

- Homogenous Si
- Trench = Trenchgate Technology
- V_{CEsat} with positive temperature coefficient
- High short circuit capability, self limiting to 6x I_C

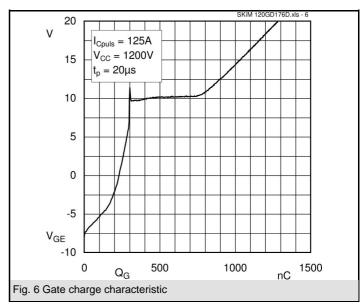

Typical Applications*

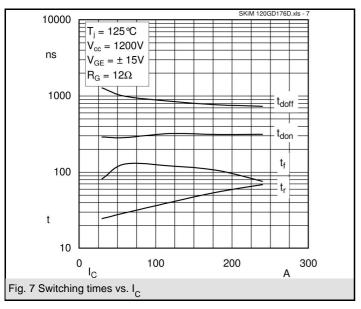

- AC inverter drives mains 575 -750 V AC
- public transport (auxiliary syst.)

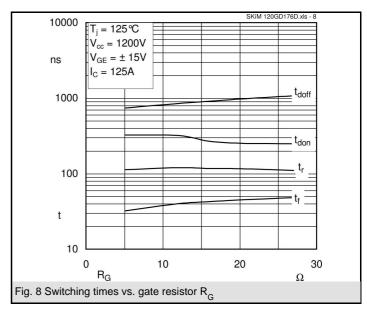

Absolute	Maximum Ratings	T_c = 25 °C, unless otherwise specified					
Symbol	Conditions	Values	Units				
IGBT							
V_{CES}		1700	V				
I _C	T _s = 25 (70) °C	110 (85)	Α				
I _{CRM}	$t_p = 1 \text{ ms}$	250	Α				
V_{GES}	·	± 20	V				
$T_j (T_{stg})$		- 40 150	°C				
T _{cop}	max. case operating temperature	125	°C				
V _{isol}	AC, 1 min.	3300	V				
Inverse diode							
I _F	T _s = 25 (70) °C	105 (80)	Α				
I_{FRM}	$t_p = 1 \text{ ms}$	200	Α				
I _{FSM}	$t_p = 10 \text{ ms; sin.; } T_j = 150 \text{ °C}$	1200	Α				

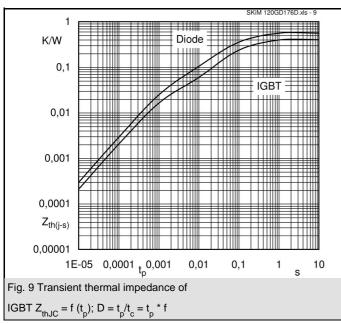

Characteristics $T_c = 25 ^{\circ}\text{C}$, unless otherwise specified								
Symbol	Conditions	min.	typ.	max.	Units			
IGBT								
$V_{GE(th)}$	$V_{GE} = V_{CE}$; $I_C = 5 \text{ mA}$	5,15	5,8	6,45	V			
I _{CES}	$V_{GE} = 0; V_{CE} = V_{CES};$ $T_i = 25 °C$			0,3	mA			
V_{CEO}	T _j = 25 (125) °C		1 (0,9)	1,2 (1,1)	V			
r_{CE}	$T_{j} = 25 (125) ^{\circ}C$		8 (12)	10 (14,4)	mΩ			
V _{CEsat}	I_{Cnom} = 125 A; V_{GE} = 15 V,		2 (2,4)	2,45	V			
	T _j = 25 (125) °C on chip level							
C _{ies}	V _{GE} = 0; V _{CE} = 25 V; f = 1 MHz		11		nF			
C _{oes}	$V_{GE} = 0$; $V_{CE} = 25 \text{ V}$; $f = 1 \text{ MHz}$		0,45		nF			
C _{res}	$V_{GE} = 0$; $V_{CE} = 25 \text{ V}$; $f = 1 \text{ MHz}$		0,35		nF			
L _{CE}			10	15	nH			
R _{CC'+EE'}	resistance, terminal-chip T _c = 25 (125) °C		1,35 (1,75)		mΩ			
t _{d(on)}	V _{CC} = 1200 V		320		ns			
t _r	I _{Cnom} = 125 A		40		ns			
t _{d(off)}	$R_{Gon} = R_{Goff} = 12 \Omega$		850		ns			
t _f	T _j = 125 °C		120		ns			
$E_{on} (E_{off})$	V _{GE} = ± 15 V		72 (46)		mJ			
$E_{on} \left(E_{off} \right)$	with SKHI 6; T _j = °C				mJ			
	$V_{CC} = V; I_C = A$							
Inverse diode								
$V_F = V_{EC}$	I _{Fnom} = 100 A; V _{GE} = 15 V; T _i = 25 (125) °C		1,6 (1,6)	1,9 (2)	V			
V_{TO}	T _j = 25 (125) °C		1,1 (0,9)	1,3 (1,1)	V			
r _T	$T_{j} = 25 (125) ^{\circ}C$		5 (7)	6 (8)	mΩ			
I _{RRM}	I _F = 125 A; T _j = 125 °C		170		Α			
Q _{rr}	V _{GE} = V di/dt = 3100 A/μs		37		μC			
E _{rr}	$R_{Gon} = R_{Goff} = 12 \Omega$		22		mJ			
Thermal of	characteristics				_			
$R_{th(j-s)}$	per IGBT			0,4	K/W			
$R_{th(j-s)}$	per FWD			0,56	K/W			
Temperature Sensor								
R_{TS}	T = 25 (100) °C		1 (1,67)		kΩ			
tolerance	T = 25 (100) °C		3 (2)		%			
Mechanical data								
M_1	to heatsink (M5)	2		3	Nm			
M_2	for terminals (M6)	4		5	Nm			
w				310	g			

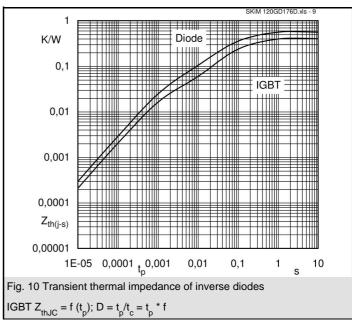


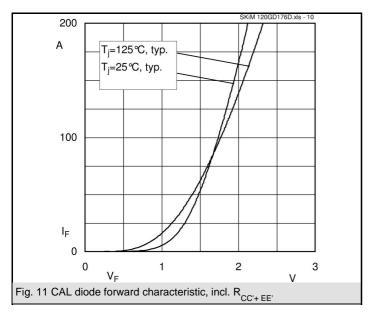


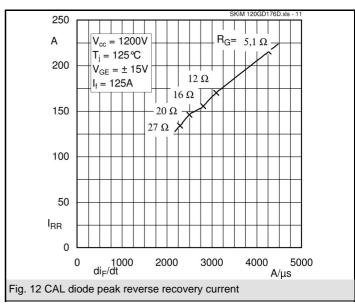


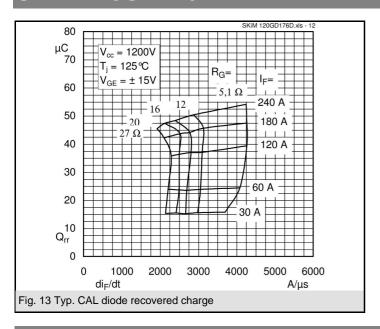


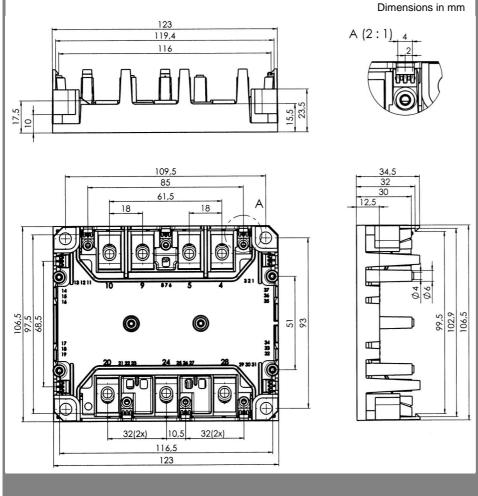












This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.